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Simultaneous Location and Mapping (SLAM) is an observational and mathematical 

technique that enables walking, rolling, sailing or swimming robots to navigate indoors 

(or in a park with trees, or anywhere for that matter ... just not in a desert or a seafloor 

with no topography) without any external (absolute) positioning aid such as GPS, USBL 

or LBL.  First, a robot entering the environment at nominal (0,0) or estimated coordinates 

scans the environment.  Scanning instruments might be sonar (like a bat), or LIDAR 

(similar principle but with coherent light), for example, or even a real-time camera, but 

cameras present special 

analysis challenges.  Then the 

scans must be analyzed (rather 

quickly) for anomalies that 

might be landmarks, such as a 

discontinuity or "spike" 

between samples indicating a 

tree (perhaps) standing out 

from its background or a trend 

reversal that might be the 

corner of two orthogonal walls.  

We presume a few things about 

the robot.  First, the robot 

knows its orientation just like a 

boy scout always knows north, 

either with a magnetic compass 

(marginal technology) or a 

sensitive, north-seeking IMU.  

Second, the robot knows the ranges and/or the bearings (angles relative to its north) to the 

landmarks that it identifies (SLAM can use ranges or bearings or both).  This is 

straightforward with sonar and LIDAR but challenging with a camera, which may require 

different perspectives ... thus odometry.  Third, the robot knows its odometry, that is, how 

far and in which direction it travels.  At the robot's next location (called a "pose" in the 

SLAM literature), it scans again and identifies old (and maybe new) landmarks.  Now a 

new challenge arises.  The robot must associate ... or not ... the landmarks of the second 

scan with the landmarks of the first scan.  With good odometry and good ranges and 

bearings to the landmarks, this is possible.   

 

All of the preceding (scanning, identification and association) is very much sensor 

specific and involves special software techniques.  Bravo to those who can do it.  These 

are the observational techniques of SLAM, which are very difficult to program in the 

abstract.  One needs to purchase some hobby boards from Seeed or Adafruit to work at 

this level (maybe another paper) ... or have a large budget (I don't).  OTOH, scanning, 

identification and association can be simulated in just a few lines of code.  After the 

observational techniques of SLAM comes a more interesting challenge (for me), the 

mathematical techniques of SLAM.  What to do with the associated landmarks and the 
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odometry?  Where is the robot?  Where are the landmarks?  Answers are generally 

provided by an Extended Kalman Filter (EKF), although there are other solutions to this 

problem.  A Kalman filter is a linear algorithm that weighs the relative merits of 

observations (scanning) and transition (odometry) and decides the optimal ratio (called 

the Kalman gain) to be applied.  Rudolf Kalman was an electrical engineer and applied to 

electrical problems (e.g. scalar measurements of voltage and amperage) the Kalman filter 

is, indeed, linear.  But applied to ranges and bearing, which are non-linear, modification 

is required.  Thus the EKF.   The "extension" of the EKF is to linearize the range and 

bearing observation equations 

by preserving the first-order 

terms of a Taylor's series 

expansion in what's called a 

Jacobian matrix (or vector) of 

partial differentials.  So, an 

EKF is just a Kalman filter 

with linearized observations.   

 

Here's how it works.  From the 

first scan, identification and 

association steps of the 

observational techniques of 

SLAM, we preserve the robot 

pose and the ranges and 

bearings to the identified 

landmarks (which we number 

for convenience).  This 

information is sufficient (with a little trigonometry) to assign coordinates to the identified 

landmarks.  Then the robot moves.  From the second and subsequent scan-identification-

association steps we again preserve the robot poses and the observations.  From these 

later poses we can predict the ranges and bearings to the landmarks even before they are 

observed.  The predicted minus the observed (P-O) is called an innovation.  In a Kalman 

filter the innovation has a role similar to that of the residual (C-O, computed minus 

observed) in least-squares estimation.  This iterative process (scan, travel, scan) 

comprises the deterministic model of a Kalman filter. 

 

The stochastic (or statistical) model of a Kalman filter accommodates the uncertainties 

(errors, probabilities) of robot and landmark positions.  A Kalman filter runs on odometry 

and observations and no odometry or observation is perfect.  Each has error ... and 

nowadays the euphemistic way to say "error" is "uncertainty".  The quality of the robot's 

north reference has error as does the distance travelled forward.  Observed ranges and 

bearings have error ... to say nothing about correct landmark association without which 

all else fails.  In a Kalman filter all these uncertainties are assumed to be normal or 

Gaussian, that is, distributed like a bell curve.  And then there's time.  The longer a robot 

travels without scanning and updating its position, the more error it accumulates.  As 

noted previously, the job of a Kalman filter is to arbitrate among all this uncertainty.  The 

mathematical steps are these: (1) to transition forward (odometry) while updating 
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position (the "state" vector) and increasing ("blooming") state uncertainty (the "P" 

matrix) as a consequence of odometry (transition), (2) to predict the observations to the 

landmarks, linearize them into the Jacobian (H) vector, and, given P and the 

observational uncertainty ("R"), compute the Kalman gain ("K"), (3) to compute the 

innovations, to multiply them by K, and to update the state, (4) to use K, H and P to 

decrease ("groom") P (the state uncertainty matrix) as a result of the new observations, 

and (5) to transition forward again and repeat the steps.  The matrix algebra of each step 

is just a single line of code in Matlab.  It's worth noting that, in 2-D SLAM,  the state 

vector contains the X and Y positions of the robot, but also its orientation w.r.t. north 

(called theta), plus the X and Y positions of all the landmarks.  (3-D SLAM is a simple 

extension of this into the vertical dimension.)  Consequently, the state vector and 

especially the P matrix (of size state vector squared) can be very large and slow to 

process.  FastSLAM (not addressed in this paper) is a method of particulating the 

problem for faster computation.  As the process runs, the robot and the landmarks 

become highly correlated in the P matrix.  That's another way of saying that the 

landmarks and the robot 

become one, relative entity, 

truly Simultaneous Location 

and Mapping (SLAM).    

 

Having disposed of these 

preliminaries, the simulation to 

be discussed is that in the first 

graphic titled "Field" 

containing six numbered 

landmarks and the circular path 

of an autonomous underwater 

vehicle (AUV).  The landmarks 

may be the edges of PLETs, 

PLEMs, or risers in a subsea 

installation.  The AUV 

observes landmarks within 

range (30 meters in this simulation) while making two loops, the first to close the loop 

and the second to benefit from the correlations induced by loop closure.  The red path and 

the red landmarks are the simulated truth; the green path and the green landmarks are 

where the SLAM EKF "thinks" things are.  The AUV enters the field with an uncertainty 

of 2 meters (accumulated, perhaps, during descent).  The landmarks are assigned an 

uncertainty of 4 meters because they are initially determined by an uncertain AUV with 

uncertain observations, later to be updated by SLAM.  Subsea LIDAR range uncertainty 

is 0.2 meters and bearing uncertainty 0.2 degrees relative to an uncertain robot 

orientation.  The AUV has an IMU onboard with a course uncertainty of 1% and an 

azimuth uncertainty of 0.5 degrees.  It may or may not be DVL aided, but it certainly is 

not USBL or LBL aided, that is, there are no absolute positioning sensors.  The AUV 

travels around the circle in steps of 4 degrees in this simulation.   
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The second plot titled "Theta w.r.t. to true azimuth" is a plot of the third element of the 

state vector, the orientation of the AUV minus the true simulated azimuth.  We should 

expect something close to zero degrees.  Notice that the plot is a bit ragged during the 

first rotation through the field, but that it settles down nicely during the second rotation 

after loop closure.  The third plot titled "AUV dX in blue, dY in green" shows the 

difference between the EKF path of the AUV and the true simulated path.  These 

differences are, of course, due to the random errors in the system.  The algorithm makes 

ample use of Matlab's random number generator to perturb the true odometry and the true 

observations.  Run the 

simulation again and you get 

different plots, but these are 

typical and within the 

expectations of the EKF itself 

as contained in the final P 

matrix (state vector 

uncertainties).  P-matrix 

positional standard deviations 

are 1.3 meters.  The "AUV dX 

in blue, dY in green" plot is 

showing differences of about 

0.5 meters in each axis, well 

within P-matrix expectations.  

The fourth and final plot 

"Landmark offsets from true" 

shows that the EKF positions 

of all six landmarks are tightly grouped about 0.4 meters from true in X and about 0.5 

meters from true in Y.  This is consistent with the previous plot "AUV dX in blue, dY in 

green".  So, as a result of two rotations of the AUV through the field we have a map of 

the field with the AUV posed within it that is about half a meter different from the 

simulated truth in X and Y, a difference that is consistent with the expectations of the 

EKF.  And now the AUV can continue to swim indefinitely within the field without 

absolute positioning sensors (USBL or LBL) while maintaining this level of accuracy.  In 

fact, the landmarks are now playing the role of LBL beacons, whereas they were 

completely uncoordinated at the beginning of the SLAM process.  Is SLAM perfect?  No.  

Is any positioning sensor (absolute or otherwise) perfect?  No.  But SLAM does a pretty 

good job in the absence of USBL and LBL, which are expensive and time consuming to 

deploy and maintain.  SLAM sails right up to the field and gets to work. 

 

 

 

 


