
 1

Subsea SLAM EKF Simulation

Noel Zinn, www.hydrometronics.com, August 2018

Simultaneous Location and Mapping (SLAM) is an observational and mathematical

technique that enables walking, rolling, sailing or swimming robots to navigate indoors

(or in a park with trees, or anywhere for that matter ... just not in a desert or a seafloor

with no topography) without any external (absolute) positioning aid such as GPS, USBL

or LBL. First, a robot entering the environment at nominal (0,0) or estimated coordinates

scans the environment. Scanning instruments might be sonar (like a bat), or LIDAR

(similar principle but with coherent light), for example, or even a real-time camera, but

cameras present special

analysis challenges. Then the

scans must be analyzed (rather

quickly) for anomalies that

might be landmarks, such as a

discontinuity or "spike"

between samples indicating a

tree (perhaps) standing out

from its background or a trend

reversal that might be the

corner of two orthogonal walls.

We presume a few things about

the robot. First, the robot

knows its orientation just like a

boy scout always knows north,

either with a magnetic compass

(marginal technology) or a

sensitive, north-seeking IMU.

Second, the robot knows the ranges and/or the bearings (angles relative to its north) to the

landmarks that it identifies (SLAM can use ranges or bearings or both). This is

straightforward with sonar and LIDAR but challenging with a camera, which may require

different perspectives ... thus odometry. Third, the robot knows its odometry, that is, how

far and in which direction it travels. At the robot's next location (called a "pose" in the

SLAM literature), it scans again and identifies old (and maybe new) landmarks. Now a

new challenge arises. The robot must associate ... or not ... the landmarks of the second

scan with the landmarks of the first scan. With good odometry and good ranges and

bearings to the landmarks, this is possible.

All of the preceding (scanning, identification and association) is very much sensor

specific and involves special software techniques. Bravo to those who can do it. These

are the observational techniques of SLAM, which are very difficult to program in the

abstract. One needs to purchase some hobby boards from Seeed or Adafruit to work at

this level (maybe another paper) ... or have a large budget (I don't). OTOH, scanning,

identification and association can be simulated in just a few lines of code. After the

observational techniques of SLAM comes a more interesting challenge (for me), the

mathematical techniques of SLAM. What to do with the associated landmarks and the

 2

odometry? Where is the robot? Where are the landmarks? Answers are generally

provided by an Extended Kalman Filter (EKF), although there are other solutions to this

problem. A Kalman filter is a linear algorithm that weighs the relative merits of

observations (scanning) and transition (odometry) and decides the optimal ratio (called

the Kalman gain) to be applied. Rudolf Kalman was an electrical engineer and applied to

electrical problems (e.g. scalar measurements of voltage and amperage) the Kalman filter

is, indeed, linear. But applied to ranges and bearing, which are non-linear, modification

is required. Thus the EKF. The "extension" of the EKF is to linearize the range and

bearing observation equations

by preserving the first-order

terms of a Taylor's series

expansion in what's called a

Jacobian matrix (or vector) of

partial differentials. So, an

EKF is just a Kalman filter

with linearized observations.

Here's how it works. From the

first scan, identification and

association steps of the

observational techniques of

SLAM, we preserve the robot

pose and the ranges and

bearings to the identified

landmarks (which we number

for convenience). This

information is sufficient (with a little trigonometry) to assign coordinates to the identified

landmarks. Then the robot moves. From the second and subsequent scan-identification-

association steps we again preserve the robot poses and the observations. From these

later poses we can predict the ranges and bearings to the landmarks even before they are

observed. The predicted minus the observed (P-O) is called an innovation. In a Kalman

filter the innovation has a role similar to that of the residual (C-O, computed minus

observed) in least-squares estimation. This iterative process (scan, travel, scan)

comprises the deterministic model of a Kalman filter.

The stochastic (or statistical) model of a Kalman filter accommodates the uncertainties

(errors, probabilities) of robot and landmark positions. A Kalman filter runs on odometry

and observations and no odometry or observation is perfect. Each has error ... and

nowadays the euphemistic way to say "error" is "uncertainty". The quality of the robot's

north reference has error as does the distance travelled forward. Observed ranges and

bearings have error ... to say nothing about correct landmark association without which

all else fails. In a Kalman filter all these uncertainties are assumed to be normal or

Gaussian, that is, distributed like a bell curve. And then there's time. The longer a robot

travels without scanning and updating its position, the more error it accumulates. As

noted previously, the job of a Kalman filter is to arbitrate among all this uncertainty. The

mathematical steps are these: (1) to transition forward (odometry) while updating

 3

position (the "state" vector) and increasing ("blooming") state uncertainty (the "P"

matrix) as a consequence of odometry (transition), (2) to predict the observations to the

landmarks, linearize them into the Jacobian (H) vector, and, given P and the

observational uncertainty ("R"), compute the Kalman gain ("K"), (3) to compute the

innovations, to multiply them by K, and to update the state, (4) to use K, H and P to

decrease ("groom") P (the state uncertainty matrix) as a result of the new observations,

and (5) to transition forward again and repeat the steps. The matrix algebra of each step

is just a single line of code in Matlab. It's worth noting that, in 2-D SLAM, the state

vector contains the X and Y positions of the robot, but also its orientation w.r.t. north

(called theta), plus the X and Y positions of all the landmarks. (3-D SLAM is a simple

extension of this into the vertical dimension.) Consequently, the state vector and

especially the P matrix (of size state vector squared) can be very large and slow to

process. FastSLAM (not addressed in this paper) is a method of particulating the

problem for faster computation. As the process runs, the robot and the landmarks

become highly correlated in the P matrix. That's another way of saying that the

landmarks and the robot

become one, relative entity,

truly Simultaneous Location

and Mapping (SLAM).

Having disposed of these

preliminaries, the simulation to

be discussed is that in the first

graphic titled "Field"

containing six numbered

landmarks and the circular path

of an autonomous underwater

vehicle (AUV). The landmarks

may be the edges of PLETs,

PLEMs, or risers in a subsea

installation. The AUV

observes landmarks within

range (30 meters in this simulation) while making two loops, the first to close the loop

and the second to benefit from the correlations induced by loop closure. The red path and

the red landmarks are the simulated truth; the green path and the green landmarks are

where the SLAM EKF "thinks" things are. The AUV enters the field with an uncertainty

of 2 meters (accumulated, perhaps, during descent). The landmarks are assigned an

uncertainty of 4 meters because they are initially determined by an uncertain AUV with

uncertain observations, later to be updated by SLAM. Subsea LIDAR range uncertainty

is 0.2 meters and bearing uncertainty 0.2 degrees relative to an uncertain robot

orientation. The AUV has an IMU onboard with a course uncertainty of 1% and an

azimuth uncertainty of 0.5 degrees. It may or may not be DVL aided, but it certainly is

not USBL or LBL aided, that is, there are no absolute positioning sensors. The AUV

travels around the circle in steps of 4 degrees in this simulation.

 4

The second plot titled "Theta w.r.t. to true azimuth" is a plot of the third element of the

state vector, the orientation of the AUV minus the true simulated azimuth. We should

expect something close to zero degrees. Notice that the plot is a bit ragged during the

first rotation through the field, but that it settles down nicely during the second rotation

after loop closure. The third plot titled "AUV dX in blue, dY in green" shows the

difference between the EKF path of the AUV and the true simulated path. These

differences are, of course, due to the random errors in the system. The algorithm makes

ample use of Matlab's random number generator to perturb the true odometry and the true

observations. Run the

simulation again and you get

different plots, but these are

typical and within the

expectations of the EKF itself

as contained in the final P

matrix (state vector

uncertainties). P-matrix

positional standard deviations

are 1.3 meters. The "AUV dX

in blue, dY in green" plot is

showing differences of about

0.5 meters in each axis, well

within P-matrix expectations.

The fourth and final plot

"Landmark offsets from true"

shows that the EKF positions

of all six landmarks are tightly grouped about 0.4 meters from true in X and about 0.5

meters from true in Y. This is consistent with the previous plot "AUV dX in blue, dY in

green". So, as a result of two rotations of the AUV through the field we have a map of

the field with the AUV posed within it that is about half a meter different from the

simulated truth in X and Y, a difference that is consistent with the expectations of the

EKF. And now the AUV can continue to swim indefinitely within the field without

absolute positioning sensors (USBL or LBL) while maintaining this level of accuracy. In

fact, the landmarks are now playing the role of LBL beacons, whereas they were

completely uncoordinated at the beginning of the SLAM process. Is SLAM perfect? No.

Is any positioning sensor (absolute or otherwise) perfect? No. But SLAM does a pretty

good job in the absence of USBL and LBL, which are expensive and time consuming to

deploy and maintain. SLAM sails right up to the field and gets to work.

